

Anastasia Karapanagou (640938922) (25%)
Fivos Kavassalis (124919167) (25%)
Ioannis Alexiou (631078066) (25%)
Josue Contreras (851386562) (25%)

 Supervised by

 Dr. Alexander Wyglinski

 https://github.com/FivosJKavassalis/ECE2305_Team14

 https://www.youtube.com/watch?v=R3chP828VOM&t=15s

 May 1, 2018

1

Table of Contents

Abstract……………………………………………………………………………….……...2

Introduction……………………………………………………………………….……….....2

Description of Proposed Solution and Brief Overview of Implementation……..……...…....2

Experimental Results……………………………………………………………………...….7

Summary of Challenges Encountered and Lessons Learned…………………………....….. 13

Discussion……...…………………………………………………………………………….13

Conclusion…………………………………………………………………………………...14

Appendix…………..……………………………………………………….………………...14

2

Abstract

An IoT system was designed and implemented that comprises a wireless network capable
of connecting multiple low complexity devices (sensors) to the Internet. The objective was
to obtain information about which Gordon Library cubicles are empty, and therefore
available for use, at any particular time. Each cubicle possessed a simple sensor connected
to an embedded processor. The desired task was to detect whether the cubicle was occupied
or not. This information would be transmitted via the Internet to the members of the WPI
community seeking an empty cubicle space to work. Our system addresses the need of the
WPI community for efficient use of time and resources, especially in periods of high
demand for quiet space in the library.

Introduction

Τhe Gordon Library, which offers space to students that wish to find a quiet place to study,
is one of the most popular places on the WPI campus. Unfortunately, at peak times, students
have a hard time finding a seat in the cubicle desk spaces located in the library. As the
population of both undergraduate and graduate students on campus increases, demand for
space on campus increases as well. Usually, most students seek places around campus to
study and focus on work but looking for space can be a waste of time and energy. This is a
great problem for WPI students’ tight schedules. Efficient use of time in a busy and
demanding academic environment is fundamental for the timely completion of work
requirements, for students and faculty alike.

The team, therefore, decided to design a system by which any member of the WPI
community may know at any given time whether the particular place/environment they are
looking for, is occupied or empty, and, in this way, make an informed decision about its
availability and use. Our project was designed to identify empty cubicle desk spaces in the
Gordon Library and communicate it to the WPI community via the Internet. The team
designed and implemented a wireless network capable of connecting multiple sensors to
the Internet in order to obtain information about which desk cubicles are empty, therefore
available to use, at any particular time. We feel we have contributed in this way towards
addressing an important need for the WPI community.

 Description of Proposed Solution and Brief Overview of Implementation

STEP 1: Set-up of the Physical Layer

For data processing, we decided to use the Arduino Nano V3.0 and Arduino Uno
microcontrollers due to their small dimensions and cost-effectiveness. Specifically, the
Arduino Nano interfaced with the ultrasonic sensor HC-SR04 we decided to include. This
microcontrollers’ array has a variety of ports to choose from so we could supplement our
design with additional modules (shown in Figure 1).

3

Figure 1: Arduino Nano V3.0 Microcontroller.

The first step involved is the interface of the microcontroller with the HC-SR04 ultrasonic
sensor(s) (shown in Figure 2). The ultrasonic sensor operates at a frequency of 40KHz and
has a range from 2 cm to 4 m which is suitable for our system. The status of the cubicle
was reported every T seconds. We designed it according to the TTL (Transistor-Transistor
Logic) communication protocol so that by a 10us pulse (high state) to the trigger pin, the
module sent out an 8-cycle sonic burst. Then, the echo pin received this burst and outputted
the time in microseconds. We have employed the following equation (shown in Figure 3)
to find the distance between an object and the ultrasonic sensor, which helps us understand
whether the cubicle is occupied.

Figure 2: HC-SR04 Ultrasonic Sensor

distance = (duration*0.034)/2
Figure 3: HC-SR04 Ultrasonic Sensor Distance Equation

Our sensor communicates to the aggregator node via the 433MHz RF front-end RX and
TX modules. The transmitter possesses three pins: GND, Vcc and DATA. We used the
DATA pin that is connected to a Digital pin on the arduino to transmit the signal, in this
case the sensor data, to our receiver. On the other hand, the receiver possesses four pins:
GND, Vcc and two DATA pins. We used only one DATA pin (shown in Figure 4). An
antenna allowed our system to propagate the signal at greater distances, therefore solving
any attenuation/path loss that the signal could encounter. However, we were also careful
not to overamplify the signal as this could cause interference with other signals. We also

4

realized that we had to optimize the various antenna configurations and distances ourselves.
We used a coiled-up antenna and 17.3 cm of straight antenna to the receiver and the
transmitter. The ASK (Amplitude Shift Keying) employed which controls the carrier wave
was encoded and decoded but also limited the amount of data communicated. Another issue
we worked on was the reduction of noise. We addressed this by using the Radiohead library.

Figure 4: Data Pin on Receiver (left) and Transmitter (right).

The physical layer was completed by the addition of an LCD and LEDs for debugging
purposes. For the former, the Crystal library was used to show the status of the modules
and whether data is being received. The LEDs served as indicators that the modules are
working correctly.

STEP 2: Medium Access Control Layer

We proceeded by working on the Medium Access Control Layer to be implemented in
Arduino. To identify the sensor sending data and its location, we had to frame a datagram
and add overhead recognizing the sensor number and the embedded processor name (Figure
5). The sender, in this case the sensor node, added only its sensor number node as overhead.
This way when the aggregator node received that data, it knew how to filter out the data
into the right channels. Each message sent out was a nine-character long string. The first
two letters of the string were the name, for example “N1” for node one. Then, the next
seven characters were either one for an occupied seat, zero for a free seat, or a comma in
order for the aggregator to know where to separate the data.

Figure 5: Datagram Construction and Deconstruction

5

This information was then sent to the aggregator node where the datagram was filtered
through the right channels to be executed. By correlating data with identifiable sensors and
embedded processors, we were able to test the reliability of our set-up and choose our data
display. In addition, we had to consider how we would address handling multiple sensor
nodes communicating with one aggregator node. We reasoned we can solve this either by
the Time Division Multiple Access (TDMA) or by the Code Division Multiple Access
(CDMA) approach. We chose to use the TDMA. This channel access method divides the
signal into different time slots, users transmit rapidly one after the other while using a single
frequency (433 MHz) and in this way, use only part of the available capacity. In our case,
only one sensor node was able to transmit during each time slot. The aggregator served as
a master that transmitted the sensor node name that it wanted to communicate with. Then,
the corresponding sensor node sent out the frame to the aggregator and once it finished
processing the data, the aggregator node called on the next sensor node it wanted to
communicate with. By using multiple time slots, the system communicated an increased
amount of data. Its implementation required that our sensor nodes and aggregator node
have a pair of transmitter and receiver modules for each node. Additionally, the system was
able to check for corrupted files and data not received with a parity checking process.

Figure 6: Simplified Diagram of TDMA Showing 3 Users Transmitting in Succession, first A, then

B, finally C and so on (from https://www.tutorialspoint.com/cdma/tdma_technology.htm)

As with every system, there are advantages (as outlined above) and disadvantages with
TDMA. Some of the caveats involve the fact that if time slots are short, then complicated
signal processing should be employed, and complex equalization may be needed.

If we had opted for the CDMA method, we would have added complexity to the code
implementation of the aggregator node as the aggregator would have to focus only on one
sensor node transmitting. In this way, ideally, we could implement transmitters on the
sensor nodes and one receiver on the aggregator node, thus enabling us to have an
error/corruption checking scheme, namely the CRC scheme. This option comes with the
caveat that data cannot be re-transmitted because of the one transmitter-one receiver
implementation mode.

6

Figure 7: Sensor Node (left) and Aggregator Node (right) Flowcharts.

7

STEP 3: Connectivity to the Internet and Web Sharing Information

For the connectivity step, we used the Blynk Library with a unique authentication token
to interface between the Arduino Uno and our smartphone application. Our effort was
directed towards taking data from the Application layer of the aggregator and sending it
to a user across the Internet. The Blynk Application would allow us to display our data,
like the occupancy of cubicles in various areas of the library, in a user-friendly graphical
user interface (GUI),

Experimental Results

Throughout implementation of this IoT device we made sure to test everything we added
carefully, but due to WPI’s fast-paced 7-week term and other classes we were not able to
test the final product in its entirety.

We started this project by testing out the one-way communication between our Tx and Rx
modules. This can be seen by the successful message in the figure below. Something
interesting that our team did not notice at this stage of our project was the “garbage” that
can be seen attached after the message received. This gave us problems during the
implementation and will be discussed later in this paper.

Figure 8: The first message received to test all the Tx and Rx modules

During this stage we also tested the communication range of the modules. Our results
showed that 8 feet was the maximum range before the packages started dropping at a fast
rate. We also must take into account that this was a controlled, peaceful environment,
which is the complete opposite from where this device would be located, which is the

8

library. We noticed that as a human body got closer to the modules, they would drop
packages even more and would lose connection rapidly. It was interesting that when the
receiver was pointed towards (this being the green box part as the front of the transmitter)
the receiver did not receive the signal. However, when pointed the other way or sideways,
it would receive the signal. This experiment was done in Line of Sight (LOS), meaning
without any obstruction, because of the attenuation/path loss as the signal traveled from
the Tx to the Rx module.

Figure 9: Range without antenna test

Finally, during this stage, we tested out the communication between multiple transmitters
and one receiver even though we knew there was going to be collision. We got the
following results: When transmitting two sensors at a time without any protocol, the serial
port immediately stopped printing values that were being transmitted. This meant that
because two signals where transmitting at the same time and in the same frequency,
collision occurred at the receiver module. After turning off one of the sensor nodes, it
took an average of 2 seconds to start transmitting again, considering that there was no
error checking or protocol.

On the next stage of the implementation process, we added the antennas. We decided to
use a 17.3 cm antenna on both the receiver and transmitter modules. We came to this
length by taking a fraction of the 433MHz wavelength (Figure 10).

Figure 10: Wavelength equation

9

After adding an antenna, transmission distance increased to about 19.812 meters (Figure
11). As shown in figure 12, we were able to successfully transmit and receive messages at
that distance. However, this was before the transmission started slowing down and losing
packets.

Figure 11: Transmission physical distance with Antenna LOFS

Figure 12: Transmission successful message

10

Regarding the Multiple Access Layer and Link Layer experimental results, we ended up
not doing error detection since it was included in the Radiohead library. When running
the system, we had a 66% success rate meaning that only 32% of errors passed. This is
not the best, but for this system it works out perfectly fine. Most of the packets dropped
where when one sensor node would take time to transmit its sensor readings and would go
over its allocated time. There was sometimes uncertainty towards what sensor readings
the aggregator node would receive. There were cases where the aggregator node would
receive the same sensor data twice in a row. Even though this happened, we found out
that because the Web Layer did not update immediately, the false readings did not show
up that many times. This is important because that way the users can receive the right
readings most of the time. Additional features could be added to the code in order to
encapsulate these edge cases.

Furthermore, our datagram changed, and instead of the ultrasonic sensor number, we used
the microprocessor name. We did this because during our experimentation process, we
realized that as the package was smaller the signals dropped would be less. We then
realized that we could further implement a way of using hex values in order to transmit
smaller packages for better communication.

Figure 13: Original datagram

Next, we worked on the Web Sharing Layer. We first tried to use Google Docs to print
the messages, but we were unable to since it printed readings from only two sensor nodes
instead of 4, which is what we wanted. Therefore, we ended up using the Blynk app,
which had the advantage of printing messages on the phone. Blynk uses an authentication
token and is very easy to use and setup. To install and set up Blynk, the following steps
were taken:

 ○ First, install the libraries on Arduino
 ○ Second, run on terminal the following commands (mac version)
 ■ Go to your arduino libraries through terminal
 ■ cd Arduino/
 ■ Cd libraries/
 ■ Cd Blynk/
 ■ Cd scripts
 ■ ./blynk-ser.sh
 ■ brew install socat
 ■ Then select the right port and it should start working
 ○ Third, open app and press the play button

11

During our implementation, we encountered a transmission issue. When the sensor node
first receives the message it authenticates it perfectly, but in the second iteration it does
not. There seems to be something added which prevents correct authentication (Figures
14 and 15).

Figure 14: Message received when transmitting correctly.

Figure 15: Second Iteration problem.

The maximum sensor nodes per aggregator node were 9. This restriction was because of
how the code uses the atoi() function to convert an integer to a char. Further
implementation could help with expanding the ratio of sensor nodes per aggregator nodes,
but for this system’s purposes, 9 is more than sufficient.

On the last stage of the implementation process, we tested out various API’s. We tried to
implement the web layer with PushingBox and Google Docs, but soon we realized that
we could only get two sensor values working and we needed a better way of showing our
data to our users. After doing some research we found the Blynk library that was simple
to use and could display our data in a readable way. Our final GUI can be seen on Figure
16. This platform is also great if we would like to scale the number of nodes we wanted to
display.

12

Figure 16: Web layer phone application GUI

The final iteration of the project is shown in Figure 17. The red light on the left node
indicates that the sensor is sending messages, while the yellow light on the right node
indicates that the sensor is listening for messages. During our experimentation we realized
the transportation of the sensor nodes affected our time spent debugging the circuits
because we would disconnect wires. We decided to fix this problem by laser cutting a box
to enclose the whole circuit. This can be seen In Figure 18, the final product.

Figure 17: Final Outcome of Project

13

Figure 18: Final Product

Summary of Challenges Encountered and Lessons Learned

The first and most important issue we had to deal with was understanding and
implementing technical challenges with TDMA, especially relevant to the testing,
debugging and packaging of data. After failing many times, we managed to have it working
and transmitting data.

Another mistake we made was the fact that we soldered a 12.5 antenna to the modules
while we should have used a 17 cm wire. We also had problems with the second iteration
of the TDMA, possibly due to variability of sensors. We thought of removing the additional
interference (“noise”) from the received message so that the receiver can authenticate the
transmitting nodes. We reasoned that we could either implement a numerical filter or reset
the variable.

We believe that by working on this project we understood and implemented a major and
complex technology used in communications, the TDMA. It is quite complex since it
requires precise synchronization between the transmitter and the receiver. We also acquired
experience in designing a prototype where we realized the different phases of design and
actual implementation. We feel the results of this project could contribute to a specific,
identifiable need of the WPI academic community. We also feel that given more time and
therefore, more improvement in its implementation, our prototype could be used in real-
life situations, outside of our university. Finally, we also realized that technical challenges
can occur in unpredictable ways sometimes, and when they occurred, we had to go back

14

and re-evaluate our strategy with the help of our TA. We believe that this enhanced our
understanding of basic principles of communications and networks.

Discussion-Future Prospects

The methodology followed in the development and deployment of a prototype application
has included the following stages:

1. Breaking the concept in subsystems, designing the different subsystems of the prototype
(Sensor Nodes, Aggregator, Web Interface)
2. Defining goals and constraints, creating a hierarchy of design requirements and

extracting the overarching system architecture
3. Developing each subsystem as a set of modules (input/output, sensory/processing,

action)
4. Integrating subsystems in a whole
5. Testing the functionality of the prototype
6. Usability testing

The resulting prototype should be considered at an early alpha stage in the software
release alpha cycle (Reference: Producing Open Source Software - How to Run a
Successful Free Software Project https://producingoss.com/en/index.html chapter 7)

This is a very early prototype that needs formal testing and further development. A
method of evolutionary prototype may contribute to collect more feedback from the users
and adapt the requirements analysis to the needs of the real users while advancing quickly
in the path of normal system development (Reference:
http://www.cs.nott.ac.uk/~pszjg1/FSE12/FSE_7.pdf)

Conclusion

Thankfully, our project worked! The web layer was launched successfully, and the nodes
are communicating correctly with each other. However, every now and then, the nodes
failed to communicate momentarily either due to network collisions, where two nodes were
trying to transmit at the same time, or due to failure to send packets. We ended up
implementing the essential idea of our proposal. We did not apply the idea of adding
photoresistors, but we still ended up with an effective, elementary system using only
ultrasonic sensors. One of the greatest takeaways from this project was that we learned a
lot about TDMA and its implementation. Moreover, we learned more about how IoT works,
by connecting physical devices through the network. Finally, our biggest problem was the
hardware and especially the receivers. Nevertheless, this is acceptable due to their low cost.

15

References

 Chesbrough, H. W. (2003). Open Innovation: The New Imperative for Creating And

Profiting from Technology. Harvard Business Review Press.
Christie, E.J., Jensen, D.D., Buckley, R.T., Menefee, D.A., Ziegler, K.K.,Wood, K. and
Crawford, R. (2012). Prototyping strategies: Literature review and identification of
critical variables. ASEE Annual Conference and Exposition, Conference Proceedings
Fujimoto, S. T. (2000). The Effect of “Front-Loading” Problem-Solving on Product.

Journal of Product Innovation Management, 17, 128-142.
Koen, P.A., Bertels, H. M. J. and Kleinschmidt E.J.(May-June, 2014). Managing the

Front End of Innovation—Part II. Research-Technology Management
Li, Y. and Bartos, R. A survey of protocols for Intermittently Connected Delay-Tolerant

Wireless Sensor Networks (2014) Journal of Network and Computer Applications 41:
411-423

Miao, G., J. Zander, J., K.W. Sung, K.W. and Slimane, B. (2016). Fundamentals of

Mobile Data Networks. Cambridge University Press. ISBN 1107143217.

Peisert, S., Talbot, E., and Kroeger, T. (2013) Principles of Authentication, in
Proceedings of the 2013 New Security Paradigms Workshop, pp. 47-56, available at
https://dl.acm.org/citation.cfm?doid=2535813.2535819

Terho H., et al (2017) Understanding the Relations Between Iterative Cycles in Software
Engineering, paper presented at the 50th Hawaii International Conference on System

Sciences, available at http://aisel.aisnet.org/hicss-50/st/agile_development/7/

Wenger-Trayner, E. A. (April 15, 2015). Communities of practice – a brief introduction.
Wenger-Trayner. Retrieved from
http://wenger-trayner.com/introduction-to-communities-of-practice/

Yang , S-H. (2014) Wireless Sensor Networks Principles, Design and Applications,

Springer, available at

ftp://doc.nit.ac.ir/cee/m.zahabi/BOOKS/wsn%20book/Shuang-Hua%20Yang%20(aut h.)-

Wireless%20Sensor%20Networks_%20Principles,%20Design%20and%20Applic ations-

Springer%20London%20(2014).pdf

16

Datasheets
 1. Arduino Nano V3:

1. http://roboromania.ro/datasheet/Arduino-Nano-roboromania.pdf 2.
 Ultrasonic Sensors:

1. http://www.micropik.com/PDF/HCSR04.pdf
2. https://elecfreaks.com/estore/download/EF03085-HC-SR04_Ultrasonic_Module_

User_Guide.pdf
3. With LCD- http://raspoid.com/download/datasheet/HCSR04

3. 433MHz RF front end RX and TX modules
1. http://arduinobasics.blogspot.com/2014/06/433-mhz-rf-module-with-arduino-tutor

ial.html
2. https://www.pjrc.com/teensy/td_libs_VirtualWire.html
3. https://www.youtube.com/watch?v=b5C9SPVlU4U&t=1092s

4. LCD
1. https://www.arduino.cc/en/Tutorial/LiquidCrystalDisplay

17

Appendix
Design proposal Document

Abstract

One of the most visited places on Campus is the Gordon Library which offers space
to students that wish to find a quiet place to study. However, at peak times, many students
have a hard time finding a seat in the cubicle desk spaces located in the library. Efficient
use of time is essential for successful accomplishment of course assignments. We decided
to address this need of the WPI community by designing and implementing a wireless
network capable of connecting multiple sensors to the Internet in order to obtain
information about which desk cubicles are empty, therefore available to use, at any
particular time. Each cubicle will possess a simple sensor and an embedded processor
detecting whether the space is occupied or not. This information will be transmitted via the
Internet to the members of the WPI community seeking an empty cubicle space to work.

Introduction to the problem statement

Have you ever been to the library on a busy week day and have not found where to
study? How about in finals week when there is no time to lose? Or have you ever been to
the Campus Center or even the Dining Hall during lunch or dinner and found it to be
packed? Yes, these places are highly sought around campus, especially during the busy
weeks of the term. As the population of both undergraduate and graduate students on
campus increases, demand for space on campus increases as well. Usually, most students
seek places around campus to study and focus on work, but it is getting harder to find them
fast, sometimes taking up to 20 minutes or more. This is a great problem for WPI students’
tight schedules. There has to be a better way to let the WPI student population know if they
should make a run to the Gordon Library to successfully find a place to study or to the
Campus Center to get something to eat. Efficient use of time in a busy and demanding
academic environment is essential for successful completion of work requirements, for
students and faculty alike. Especially for students, any measure to facilitate better
organization of their time is indispensable. For all these reasons we decided to design a
system by which any member of the WPI community may know at any given time whether
the particular place/environment they are looking for, is crowded or empty, and therefore,
make an informed decision about its availability and use. Our project will focus on
identifying empty cubicle desk spaces in the Gordon Library and communicating it to the
WPI community via the Internet.

Description of proposed solution (including rationale)

Our objective is to design and implement an IoT system, which comprises a wireless
network capable of connecting multiple low complexity devices (sensors) to the Internet in
order to obtain information about which Gordon Library cubicles are empty, therefore
available to use, at any particular time. Each cubicle will possess a simple sensor connected
to an embedded processor. The desired task will be to detect whether the cubicle is occupied

18

or not. This information will be transmitted via the Internet to the members of the WPI
community seeking an empty cubicle space to work.

Brief overview of implementation

The first step in the implementation process of our IoT system will be the
Physical Layer. For the processing of data we will be using the Arduino Nano V3.0
Microcontroller and Arduino Uno. This cost effective microcontroller has small
dimensions and possesses the input and output pins for our system. The main purpose of
this microcontroller will be to interface with the Ultrasonic sensor we have decided on
using. Furthermore, we will be able to add more modules to our system as we see fit
because of the microcontrollers’ array of ports to choose from (shown in Figure 1).

Figure 1. Arduino Nano V3.0 Microcontroller.

As mentioned above, the microcontroller will interface with the HC-SR04

Ultrasonic Sensor/s (shown in Figure 2) in order to monitor the status of a cubicle. The
Ultrasonic Sensor operates at a frequency of 40KHz, which is beyond the human hearing
capacity. In addition, it has a range from 2 cm-4 m which is perfect for the purpose of our
system. The Ultrasonic sensor will be placed directly above the cubicle to be monitored
and report its status every T seconds. The Echo and Trigger pins are the main pins we will
be using in the Ultrasonic Sensor. By sending a 10us pulse (high state) to the trigger pin
the module will send out an 8 cycle sonic burst. Then, the echo pin will receive this burst
and output the time in microseconds. This communication protocol is referred as TTL
(Transistor-Transistor Logic) which means that the level will always be logic high or logic
low (a square wave). Therefore, we can use this to find the distance the object (human) is
from the Ultrasonic Sensor with the equation shown below.

distance = duratio2n*0.034

19

Figure 2. HC-SR04 Ultrasonic Sensor Distance Equation

Figure 3. HC-SR04 Ultrasonic Sensor

In order to connect our sensor nodes to our aggregator node we will use the 433MHz

RF front end RX and TX modules. Apart from being inexpensive, they are really easy to
use and make our system have a minimalistic design. The Transmitter posses three pins:
GND, Vcc and DATA. We will be using the DATA pin that is connected to a Digital pin
on the arduino to transmit the signal, in this case the sensor data, to our Receiver. On the
other hand, the Receiver possesses four pins: GND, Vcc and two DATA pins. We will be
using only one DATA pin (shown in Figure 3). According to our research, adding an
antenna to the Tx and Rx modules would enable the signal of our system to be propagated
at greater distances, therefore solving any attenuation/path loss that the signal could
encounter. However, it was brought to our attention that over amplifying the signal could
cause interference with other signals and could possibly get us in trouble with authorities,
therefore we will be careful to keep the signal within range and consult with the professor
when in doubt. Apart from that, we also realized from various resources that we had to test
the distance ourselves with the various antenna configurations for better results. Ideally,
we will use an antenna of half or a quarter of the wavelength (17.3 cm) because these
modules transmit at a frequency of 433 MHz with a wavelength of 69.24 cm. We will start
by adding 17.3 cm of coiled up antenna to the receiver and 25 cm of straight antenna to the
transmitter. This should give us a pretty good range to start with. Furthermore, these
modules use an ASK (Amplitude Shift Keying) which modulates the carrier wave and can
be easily encoded and decoded, but is limited to the amount of data it can send. To deal
with noise, we will use the “radio head” library that takes care of keying to reduce noise
and provides us with an array of functions to transmit/receive data.

20

Figure 4. Data pin on Receiver (left) and Transmitter (right).

The final components we will add to the physical layer are a LCD and LEDs. For
the LCD we will use the “Crystal library” to show the status of the modules and whether
data is being received. The LEDs will serve as indicators that the modules are working
correctly. These two components will make debugging the system a lot easier. Our team
may decide to add more sensors to the system as we see fit.

Estimated Parts List With Individual Costs

Name Q
ua
nti
ty

Cost per unit

Ultrasonic Module HC-SR04 Distance
Sensor

TB
D

$2.00

Arduino Nano V3.0, Elegoo Nano board
CH340/ATmega328P

3 $4.29

21

UNO R3 Board ATmega328P
ATMEGA16U2

1 $10.90

Gowoops 433Mhz RF Transmitter and
Receiver 5

pai
rs

$1.80

LCD Display 1 $3.90

LED Lights TB
D

$0.04

The second step in the implementation process is the Medium Access Control

Layer. This will be mainly implemented in Arduino and MatLab code. We will have to
keep track of which sensor is sending data and from what area of the library
(microprocessor) it is being sent. This can be done by framing a datagram and adding
overhead that specifies the sensor number and the embedded processor name. This packet
will then be sent to the aggregator node were the datagram will be filtered through the right
channels to be executed. We will be able to correlate data to a specific sensor and embedded
processor that will allow us to implement a transport layer to test the reliability of the data
received. This will also allow our user interface to distinguish how to display the data.
Furthermore, there are two possible ways of how we will address handling multiple sensor
nodes that communicate with one aggregator node. The first possible implementation is the
Time Division Multiple Access (TDMA) approach. This multiple channel access method
will allow the system to communicate over one frequency (433 MHz). Time will be divided
into slots and only one sensor node will be able to transmit during each slot. For this case
the aggregator will serve as a master that calls (transmits) the sensor node name that it
wants to communicate with. Then the sensor node will send out the frame to the aggregator
and once it finishes processing the data, the aggregator node will call on the next sensor
node it wants to communicate with. This will require that our sensor nodes and aggregator
node have a pair or transmitter and receiver modules for each node. Additionally, the
system will be able to check for corrupted files and data that is not received with a parity
checking process. On the other hand, the second multiple channel access method we could
implement is the Code Division Multiple Accesses (CDMA). This method will add
complexity to the code implementation of the aggregator node. The aggregator node will
have to filter out all the sensors nodes that are transmitting and focus on the one it is
listening for. The sensor nodes will therefore be transmitting continuously and could be
accessed at any time. The reason behind this, is that ideally in the physical layer of our
system, this will allow us to use only transmitters on the sensor nodes and one receiver on
the aggregator node. This will be able to have an error/corruption checking scheme, namely
the CRC scheme, but unfortunately it cannot re-transmit data because of the one
transmitter-one receiver implementation. Therefore, that data will be lost.

22

 Figure 5. Sensor Node (left) and Aggregator Node (right) Activity Diagrams.

23

The third and fourth step of the implementation process are somewhat connected,

the layers being the connectivity to the Internet and the Web Sharing Information. For the
Connectivity to the Internet Layer we will be using the Blynk Library with a unique
authentication token in order to interface between the arduino and the application on our
phones. This will allow us to take that data from the Applications layer of the aggregator
node and send it across the web to a user. This brings us to the Web Sharing of Information
Layer where we will use the Blynk Application as mentioned before. This application will
allow us to display data from the sensors across the internet with an easy-to-read graphical
user interface (GUI). Some of the features that this GUI will display are the status of seats
and cubicles in different areas of the library. Another program that our system could
interface with is “ThinkSpeak MATLAB”. Our team will further implement this section of
the project as we see fit for our system.

Figure 6. Illustration of the IoT architecture for a wireless sensor network used to detect

the presence of humans.
.

 Prototype development methodology and evaluation strategies

We will use the following prototyping methodology:

1. Break the concept in subsystems, design the different subsystems of the prototype
(Sensor Nodes, Aggregator, Web Interface)

2. Define goals and constraints, create a hierarchy of design requirements and extract
the overarching system architecture

24

3. Develop each subsystem as a set of modules (input/output, sensory/processing,
action)

4. Integrate subsystems in a whole
5. Test the functionality of the prototype
6. Usability testing

We will implement the following steps for the completion and evaluation of our prototype
1. We will make sure the prototype is correct and faithful to the design. As we will

build the prototype, we will make the necessary changes and fix errors that may
come up. In this way we will employ a strategy that identifies and solves problems
in early phases of the development of our prototype (otherwise called “front
loading” problem solving).

2. We will conduct multiple rounds of usability testing with increasing levels of
fidelity.

3. We will consider the limitations of our prototype, thus defining what we can and
cannot test.

4. We will create a “community of practice” (CoP) which would be a group of people
from the WPI community (undergraduate and graduate students, faculty,
administrators) that share the same need of solving the problem we are attempting
to solve, i.e. the need of knowing which common spaces on campus are available
to use.. We will explain our prototype to them and ask them to use it and share their
views and comments on its usability. From the literature it is clear that employment
of CoPs in prototype evaluation strongly correlates with innovation.

5. We will create a video that we will upload to YouTube, in order to showcase our
prototype.

25

Project logistics (e.g., timeline, milestones, task specification)

TIMELINE

MILESTONES AND TASK SPECIFICATION

March 30
• Complete Proposal Document

April 6 ● Setup client and complete functionality of individual
board without networking

April 13
• Set up local communication between clients and

“server”
• Initial setup for web-interface

April 19
• Complete web interface

April 27 • Fix bugs

May 1 • Final Report

Source Code & video
The source code and video can be found in the following link:

 https://github.com/FivosJKavassalis/ECE2305_Team14
 https://www.youtube.com/watch?v=R3chP828VOM&t=15s

	Table of Contents
	Abstract
	Introduction
	Description of Proposed Solution and Brief Overview of Implementation​
	Experimental Results
	Summary of Challenges Encountered and Lessons Learned
	Discussion-Future Prospects
	Conclusion
	Abstract
	Introduction to the problem statement
	Description of proposed solution (including rationale)
	Brief overview of implementation
	​Prototype development methodology and evaluation strategies
	Project logistics (e.g., timeline, milestones, task specification)

