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Abstract—This paper presents a wearable device that extracts
and utilizes a photoplethysmogram waveform to measure and
estimate various vital signs via a mobile application’s custom-
designed algorithms. These vital signs include peripheral oxygen
saturation, heart rate, respiratory rate, and short/long term heart
rate variability. The device wirelessly transmits accumulated data
to a mobile phone and a personal computer over Bluetooth
Low Energy. Moreover, this paper explores the proposed device
as an emerging technology with the Coronavirus Disease 19
(COVID-19) pandemic’s contemporary concerns. The peripheral
oxygen saturation measurements would give an early indicator of
degrading respiratory health before the apparent manifestation
of symptoms. The convenient use of this device in a mobile setting
is especially relevant to current isolation precautions in place and
its critical role in improving at-risk patients’ care.

I. INTRODUCTION

Oxygen is an essential molecule to facilitate cellular respira-
tion, which is crucial for necessary life processes [1]. A patient
can develop hypoxemia with a lower oxygen intake where
the patients’ blood oxygen saturation level is below normal.
Hypoxemia can then lead to hypoxia, where the tissues of
the body lack sufficient oxygen. This lack of oxygen can lead
to tissue necrosis and irreversible cell death as well as other
health complications [2]-[4]. For these reasons, an accurate
measurement of blood oxygen level is crucial for physicians
to assess a patient’s health.

Medical professionals use photoplethysmogram (PPG) tech-
nology for patients because it is a non-invasiveness and quick
setup. By employing other signal processing tools, the PPG
waveform can also produce the patient’s heart rate, respiratory
rate, heart rate variability, and arterial stiffness. Heart and
respiratory rates are basic vital signs that all health providers
look for in patients. It is less commonly known that heart rate
variability measures each patient’s heartbeats’ time variability
and is controlled in part by a patient’s automatic nervous
system. Other work has also shown that PPG can also measure
arterial stiffness by analyzing the peaks and time delays of the
PPG waveform [5].

Devices like the proposed PPG platform that can monitor
and report critical vital signals open a new medicine era.
Wireless connectivity would grant patients more comfort and
freedom while the health provider monitors them continuously.
This paper proposes a prototype wireless PPG acquisition
system that, aside from SpO,, also reports respiratory rate,
heart rate, and heart rate variability to an application on
a mobile phone. The data collected is then stored in an
online real-time database. Section II explains the details of the

system architecture. Section III presents the various algorithms
developed. Section IV display the experimental results and the
related discussion, and Section V concludes.

II. SYSTEM OVERVIEW

The pulse oximeter system consists of a power management
block, the analog front-end (AFE), light-emitting diode (LED)
driving circuit, the microcontroller (ESP32 Pico) with a build-
in Blue Tooth Low Energy (BLE) communication module,
and a companion app. Fig. 1 illustrates the top-level diagram
of the system. The subblock are explained in the following
subsections.

A. Analog Hardware Components

The power management system consists of a low-drop-out
voltage regulator that takes an external battery supply and
regulates it to the necessary 3.3 V voltage supply for the rest
of our system.

The LED driving circuit follows an H-bridge configuration,
as the ELM-4002 LED package contains both red and infrared
(IR) LEDs that are anti-parallel with each other.

On the top half of the H-bridge, the PMOS transistors act as
switches controlling which direction current will flow through
the ELM-4002 package. The NPN transistors at the bottom
of the H-bridge are controlled using DAC signals that set
the amount of current allowed to flow through the LEDs to
controls their respective light intensities.

Fig. 1. also depicts the circuit schematic of the analog
front-end. The photodiode (PD) converts light energy re-
flected by the tissue and generates a proportional current. The
transimpedance amplifier then amplifies this current with a
feedback resistor of 200 kQ. A 10 pF feedback capacitance
Cy is placed parallel to the resistor to ensure the amplifier’s
stability.

The PPG signal enters a low pass filter with a -3dB
frequency of 15 Hz to attenuate unwanted high-frequency
noise. This subsequent signal represents the DC component,
which is then fed into one of the ESP32’s analog to digital
converter (ADC) inputs and continues down the AFE signal
circuit. The filtered DC signal goes through a voltage buffer
amplifier onto an AC coupled non-inverting amplifier. In this
AC coupled amplifier, the signal undergoes a high pass filter
designed with 0.7 Hz corner frequency to block the DC portion
of the signal allowing the AC signal of the PPG to be amplified
by 100 V/V.
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Fig. 1. Top-level block diagram

B. Microcontroller and ADC

The microcontroller, ESP32 Pico, handles the data collec-
tion from the AFE and provides the required signals to operate
the LED drivers. As well as transmit the raw data to a mobile
platform. The ESP32 is capable of working in different power
modes. The primary operation modes utilized is the active
mode and modem sleep mode. The former has all the features
of the ESP32 on, particularly the BLE module for transmitting
data. In contrast, modem sleep mode is less power-intensive
and primarily used to send control signals through various
general-purpose pins and its two integrated DACs while also
reads signals from its two integrated 12-bit ADCs.

The ESP32’s 8-bit digital to analog converter (DAC) can
provide 256 levels between 0 V to 3.3 V. The ESP32’s control
signals switch on the red and IR LEDs alternately at 10 kHz
frequency. The incident light from the IR and red LEDs shines
into the tissue bed, and the PD receives the reflected light.

C. Mobile Application

The proposed companion application can monitor and es-
timate various vital signs via custom-designed algorithms.
These vital signs include peripheral oxygen saturation, heart
rate, respiratory rate, and both short-term and long-term heart
rate variability. The mobile application was developed using
the Android Studio and Google’s Firebase platform to push
and pull the data.

III. ALGORITHMS

This section discusses the various algorithms implemented
within the Android mobile application to extract vital sign
parameters from the collected PPG signals.

A. Peripheral Oxygen Saturation (SpO-)

The focal purpose of pulse oximetry is extracting the pe-
ripheral oxygen saturation values. The algorithm implemented
for this extraction is illustrated in Algorithm 1.

To obtain the subject’s blood oxygen level, 2 minutes and
10 seconds of data (sampling frequency was set to 250 Hz),
with the number of samples distributed equally between the
red and IR LED, were transmitted from our device over BLE

Algorithm 1 SpO, Algorithm

1: procedure SPO;,(PPG ARRAY ALL[])

2: Initialize variables

3 Copy RED and IR PPG values to separate arrays

4: Perform FFT to the IR and RED PPG array

5: for i=0— 8192 do

6: abs_red_ppg_arr[i] < red_ppg_arr[i].abs()/array_length
7 abs_ir_ppg_arr[i] < ir_ppg_arr[i].abs()/array_length

8 freq_values[i] < (sampling_frequency*i)/array_length

9: for i=1— 8191 do

10: abs_red_ppg_arr[i] < 2*abs_red_ppg_arr[i]
11: abs_ir_ppg_arr[i] < 2*abs_ir_ppg_arr[i]

12: red_DC_val and ir_DC_val were received from device over BLE
13: for i=1— 8191 do

14: freq < freq_values]i]

15: if freq > 0.5 && freq < 5 then

16: if local_max_red | abs_red_ppg_arr[i] then
17: local_max_red < abs_red_ppg_arr[i]
18: if local_max_ir < abs_ir_ppg_arr[i] then
19: local_max_ir <— abs_ir_ppg_arr][i]

20: red_AC_val < local_max_red

21: ir_AC_val < local_max_ir

22: Calculate R from Equation 1
23: SpO2_percentage = 115 - R x 25
24: return SpO2_percentage

to our Android application periodically. Two elements from
the BLE data were the DC components for the red and IR
PPG waveforms. The rest of the transmitted data were related
to calculate the AC components for PPG waveforms.

A digital sixth-order Butterworth Low Pass filter with a
cutoff frequency of 5 Hz was applied to the AC component
of the PPG waveform data to reduce the noise of these two
signals. These signals were read by the microcontroller’s ADC
and concurrently accentuated the desired frequencies used to
extract the AC components for SpO,. Subsequently, spectral
analysis was performed using the Fast Fourier Transform
(FFT) on both waveforms. After computing the one-sided
spectrum for the red and IR PPG waveforms, their AC com-
ponents were determined by locating the peak in the full span
of the cardiac frequency range (0.5 - 5 Hz). The resolution of
the transforms was equal to approximately 0.0153 Hz. From
these extracted values, the algorithm computed the SpO, ratio
”R” by dividing the normalized red and IR AC components,
which was given by the following equation:



Algorithm 2 Heart Rate Algorithm

Algorithm 3 Respiratory Rate Algorithm

1: procedure HEART RATE(PPG ARRAY ALL[])
2 Initialize variables
3 Copy RED PPG values to an array
4: Perform FFT to the RED PPG array
5: for i=0— 8192 do
6: abs_red_ppg_arr[i] < red_ppg_arr[i].abs()/array_length
7 freq_values[i] < (sampling_frequency*i)/array_length
8 for i=1— 8191 do
abs_red_ppg_arr[i] < 2*abs_red_ppg_arr[i]
10: for i=1— 8191 do
11: freq < freq_values[i]

1: procedure RESPIRATORY RATE(PPG ARRAY ALL[])

2: Initialize variables

3 Copy RED PPG values to an array

4: Perform FFT to the RED PPG array

5: for i=0— 8192 do

6: abs_red_ppg_arr[i] < red_ppg_arr[i].abs()/array_length
7 freq_values[i] < (sampling_frequency*i)/array_length
8: for i=1— 8191 do

9: abs_red_ppg_arr[i] < 2*abs_red_ppg_arr[i]

10: for i=1— 8191 do

11: freq < freq_values[i]

12: if freq > 0.05 && freq < 0.7 then

13: if local_max_red < abs_red_ppg_arr[i] then

14: red_local_max_index <« i

15: return (respiratory_rate<freq_values[red_local_max_index]*60)

12: if freq > 1 && freq < 4 then
13: if local_max_red < abs_red_ppg_arr[i] then
14: red_local_max_index <« i
15: return (heart_rate<—freq_values[red_local_max_index]*60)

( redACval )

_ \redDCval (1)
( ?rACvul )
irDCval

Finally, the algorithm was able to calculate the oxygen
saturation (SpO;) percentage by applying the empirical for-
mula given on line 23 in Algorithm 1 with the ratio ”R.” The
constants displayed in the equation above were validated by
concurrently testing our device against a commercial pulse
oximeter [6].

B. Heart Rate

The process of extracting the heart rate mirrors the SpO»
extraction closely. However, obtaining the heart rate can be
done with one PPG waveform instead of two. Additionally, the
frequencies of interest for healthy patients range from 1 to 1.7
Hz (60 to 100 bpm); however, the algorithm searched up to 4
Hz to capture a greater span of the cardiac frequency range and
potentially spot problematic heart rate levels. Upon locating
the harmonic peak in this range of frequencies, the resultant
is multiplied by 60 to get the final result as beats per minute.
In other words, the heart rate was measured accordingly in
line 15 of the Algorithm2 [7] [8].

C. Respiratory Rate

The respiratory rate extraction from a given PPG signal
follows the same protocols as the heart rate algorithm. How-
ever, the frequencies of interest are shifted towards the DC
component. The algorithm focused on the band between 0.05
and 0.7 Hz, which corresponds to 3 and 42 breaths per minute.
The predominant respiratory frequency is also multiplied by
60 to get breaths per minute, as displayed in line 15 of the
Algorithm 3 (denoted as respiratory_rate).

D. Heart Rate Variability

Currently, there is no universal agreement for the best HRV
index. However, there are two main types of algorithms:
short-term and long-term heart rate variability evaluation. We
developed algorithms for both types. For the former, six HRV
indices were calculated in the time domain. For the latter,
spectral analysis was performed. The critical short-term heart
rate variability characteristics are outlined in Table I.

1) Short-Term: The complete algorithm that was used to
calculate the six short-term HRV indices as listed in Table I.
The baseline used to compare the results is indicated in Table
V.

TABLE I: Short-Term HRV Indices

HRV Calculation Methods Physiological
Indices Indications
SDNN Standard deviation of NN in- | Measure of the overall
tervals variability in HR
COv Coefficient of variance (nor- | Changes in overall
malized SDNN) variability independent
of changes in mean
NNinterval
SDSD Standard deviation of succes- | Reflection of parasym-
sive NN differences pathetic influence on
the heart.
RMSSD | Root-mean-square of succes- | Reflection of parasym-
sive NN differences pathetic influence on
the heart.
NNS50 Number of successive NN dif- | Index of vagal tone
ferences > 50 ms
pNN50 | Proportion of successive NN | Normalized version of
differences greater > 50ms | NNS50, independent of
(NN50 / Number of NN differ- | HR
ences)

2) Long-Term: First, we needed to collect around 24 hours
worth of PPG waveform data. Once all the PPG data is re-
ceived, the algorithm performs spectral analysis to the data by
initially applying an FFT and then calculating the power spec-
tral density (PSD). Low-frequency signal fluctuations reflect
activity in the autonomic nervous system [7]. More precisely,
sympathetic activity is defined by the power in the 0.01 to
0.15 Hz range, while the power defined in parasympathetic
activity is in the 0.15 to 0.5 Hz range. Therefore, the algorithm
located the most significant amplitude in both of these regions,
respectively. The peak in the 0.01 - 0.15 Hz region is called
the ”LF component,” while the peak in the 0.15 - 0.5 Hz
region is called the "HF component.” Then, the power ratio
(LF/HF) was calculated, which directly displays changes in
sympathetic and parasympathetic activity. This ratio between
sympathetic and parasympathetic activity represents long term
HRV evaluation.

IV. RESULTS AND DISCUSSION

The SpO; and heart rate values generated by the algorithm
are displayed for the patient through the mobile app and the
Firebase database. The results from experimental testing are
shown in the following Table II.

The chart utilize four sets of measurements to evaluate the
device’s performance. A key consideration regarding these



TABLE II: Numerical results for SpO, and Heart Rate

Masimo Rad-8 This work Percent Error

@ | (bpm) | (%) [ Gpm) | (B) | (%)
Test | SpO2 | HR SpO2 | HR SpO2 | HR
1 97.96 | 68.38 97.92 | 68.66 | -0.03 0.41
2 99.78 | 76.08 100 76.90 | 0.21 1.07
3 97.21 | 83.67 97.65 | 82.39 | 0.45 -1.52
4 95.46 | 73.22 | 94.5 76.90 | -1.00 | 5.024

TABLE III: Numerical SHRV values.
HRYV Indices

Test | SONN | COV__ [ SDSD | RMSSD [ NN50 | pNN50
1 145.795 0.2526 127.612 | 208.473 89 % 80 %
2 148.204 0.25877 | 134.682 | 215.112 92 % 82 %
3 157.765 0.2627 145.81 228.87 89 % 83 %
4 158.5958 | 0.26372 | 139.015 | 221.3869 | 87 % 81 %

results is that our device provides one SpO; value and one
heart rate value for one test (roughly 2 minute period of data
collection). Conversely, values from the commercial device
were averaged over that same period. Based on Table II, the
values of SpO, and heart rate are consistent with the nominal
adult range for SpO, and heart rate. Furthermore, the statistical
figure R? is 0.9634 for SpO, and 0.8994 for the heart rate
measurements.

TABLE IV: Expected HRV values from other works.

Ref[ # of | SDNN| COV [ SDSD RMSSD | NN50 pNNS50
Partic- (ms) (ms) (%)
ipants
392 13- N/R N/R N/R N/R N/R

9] 168
36 20- 0.04- | 20-100 | 20-80 80-120 | 15-30

[7] 120 0.12

The third set of data collected is short-term heart rate
variability, which includes six calculated parameters from the
test series. The tabulated is documented in the following Table
III. It can be seen from comparing our extracted values to
the expected values in Table IV, that our measurements seem
slightly skewed in the positive direction. Measurements for
COV, SDSD, RMSSD, and pNNS50 are all higher than their
standard counterparts. This is most likely due to our peak
detection algorithm. This conclusion is further supported by
the fact that the pNN50 measurement is greater than the
expected by roughly 50%, meaning that the proportion of NN
intervals greater than 50 ms is approximately 80% rather than
the expected 30%. All these measurements can be improved
by improving the ADC input signal, optimizing our digital
filtering, and testing more robust peak detection algorithms.

V. CONCLUSIONS

We have designed this prototype as a foundation for a flexi-
ble wearable sensor in pulse oximetry devices. To demonstrate
the device’s utility, we measured a patient’s pulse oximetry
and heart rate and compared it against a commercial device
in the nominal patient levels. The results of the device show
a maximum of 1% deviation from SPO, and a maximum
of 5% of the heart rate between the Masimo device and
the proposed MQP device. Additionally, more work could be
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Fig. 2. Masimo Pulse Oximeter setup in A), MQP device setup in B)

done to evaluate the device’s performance under deoxygenated
states. Alongside additional improvements to the algorithms to
extract major vitals. Ultimately, this demonstrates a success-
ful implementation of a wearable sensor with hardware and
algorithms to extract SpO,, heart rate, short-term heart rate
variability.
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